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The story so far
The proposition 99 data has a number of pre- and post-
intervention observations (i.e. time points)

So far we computed averages and estimated

𝐶𝐸𝑝𝑜𝑠𝑡 = ത𝑌𝑝𝑜𝑠𝑡
1 − ത𝑌𝑝𝑜𝑠𝑡

0



Interrupted Time Series
Interrupted Time Series:
• Instead of taking averages, use pre-intervention data
𝒀𝑝𝑟𝑒
0 to forecast/predict 𝒀𝑝𝑜𝑠𝑡

0

• Once we have predictions ෠𝑌𝑝𝑜𝑠𝑡
0 , we compare those to

the observed 𝑌𝑝𝑜𝑠𝑡1

• I.e. we use pre-intervention data to impute the missing counterfactual

This means we can in principle estimate

෢𝐶𝐸𝑡 = 𝑌𝑡
1 − ෢𝑌𝑡

0



𝑇𝑖𝑚𝑒 𝑌𝑡 𝐴𝑡 𝑌𝑡
0 𝑌𝑡

1

1 7 0 7 𝑁𝐴

2 9 0 9 𝑁𝐴

3 6 0 6 𝑁𝐴

4 5 0 5 𝑁𝐴

5 6 0 6 𝑁𝐴

6 2 1 𝑁𝐴 2

7 3 1 𝑁𝐴 3

8 1 1 𝑁𝐴 1

… … … . . . …

𝑇 2 1 𝑁𝐴 2



𝑇𝑖𝑚𝑒 𝑌𝑡 𝐴𝑡 𝑌𝑡
0 𝑌𝑡

1

1 7 0 7 𝑁𝐴

2 9 0 9 𝑁𝐴

3 6 0 6 𝑁𝐴

4 5 0 5 𝑁𝐴

5 6 0 6 𝑁𝐴

6 2 1 𝑁𝐴 2

7 3 1 𝑁𝐴 3

8 1 1 𝑁𝐴 1

… … … … …

𝑇 2 1 𝑁𝐴 2

Fit a forecasting Model 

෡𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 +⋯𝛽 ∗ 𝑇𝑖𝑚𝑒

Interrupted Time Series
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Interrupted Time Series
Point forecasts allow us to compute point estimates of our 
causal effect

෢𝐶𝐸𝑡 = 𝑌𝑡
1 − ෢𝑌𝑡

0

We can quantify our uncertainty about the causal effect based 
on our uncertainty around our (model-based) forecasts



Building a forecasting model
Much of the challenge of this approach is in choosing an appropriate forecasting model

These can be very simple or very complex, e.g.:

• If we forecast with the mean we are very close to the post – pre analysis

𝑌𝑡 = 𝜇𝑝𝑟𝑒 + 𝑒𝑡



Building a forecasting model
Much of the challenge of this approach is in choosing an appropriate forecasting model

These can be very simple or very complex, e.g.:

• If we forecast with the mean we are very close to the post – pre analysis

𝑌𝑡 = 𝛽0 + 𝛽1 𝑇𝑖𝑚𝑒 + 𝑒𝑡

𝑌𝑡 = 𝜇𝑝𝑟𝑒 + 𝑒𝑡

• We can forecast by fitting a growth curve which would model the overall time trend



Forecasting with growth curves





Building a forecasting model
Much of the challenge of this approach is in choosing an appropriate forecasting model

These can be very simple or very complex, e.g.:

• If we forecast with the mean we are very close to the post – pre analysis

𝑌𝑡 = 𝛽0 + 𝛽1 𝑇𝑖𝑚𝑒 + 𝑒𝑡

𝑌𝑡 = 𝜇𝑝𝑟𝑒 + 𝑒𝑡

• We can forecast by fitting a growth curve which would model the overall time trend

• We can forecast by using time-series models that model autocorrelation

e.g. ARIMA models can account for autocorrelation and time trends

𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝑒𝑡 𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝑒𝑡 𝑌𝑡 − 𝑌𝑡−1 = 𝛾𝑒𝑡−1 + 𝑒𝑡



Fitting time-series models fpp3





Key Assumptions
Our inferences about the causal effect are entirely dependent 
on being able to fit an appropriate forecasting model
- i.e. one that correctly captures the trend and autocorrelation 

structures in the data

In practice, this may be very difficult



Key Assumptions
Data driven approaches can be applied, but may only be feasible with a 
large amount of pre-intervention training data
- We use information criteria for model selection 
- See also: cross-validation

In addition, different forecasting models come with their own 
assumptions, 
- E.g. constant trend or time-invariant relationships

Poor forecasts = Poor estimates (and uncertainty) of causal effects



Key Assumptions
When comparing to the pre-post design;
- We relax the no-trend assumption: we model any trend / serial 

dependence

No-confounding assumption:
- We still assume that any changes can be attributed to the intervention
- And not, e.g., something else that happened around the same time
- To tackle that we need control units + other assumptions



Regression Discontinuity (RDD)
Closely related technique, but used in many other contexts
E.g., instead of “Time” we may have “Income”; if above X, eligible for social 
welfare.

In a RDD analysis you fit piecewise growth-curve type model such as

In this model the effect of the intervention is parameterized by the 
change in level 𝛽1 and the change in trend 𝛽3 after the intervention
Hypothesis tests on these parameters are used as hypothesis tests about 
the presence / absence of a causal effect

𝑌𝑡 = 𝛽0 + 𝛽1𝐴𝑡 + 𝛽2 𝑇𝑖𝑚𝑒 + 𝛽3 ∗ 𝑇𝑖𝑚𝑒 ∗ 𝐴𝑡 + 𝑒𝑡



Regression Discontinuity in Practice





Basic Idea:

You directly model whatever changes you think happen to the target process

- Instead of making forecasts/predictions of the counterfactual directly

Advantages

• More direct. Inference about CE based on significance tests on “change” 
parameters

• Many extensions and theory to deal with, e.g., “sharp” vs “fuzzy” designs

Disadvantages

• Strongly rely on correct model specification and model interpretability;  specify 
“where” or “how” the intervention has an effect

Regression Discontinuity



Practical

Work in your groups!



Lunch


	Slide 1: Interrupted Time Series  & Regression Discontinuity 
	Slide 2
	Slide 3
	Slide 4
	Slide 5: The story so far
	Slide 6: Interrupted Time Series
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Interrupted Time Series
	Slide 12: Building a forecasting model
	Slide 13: Building a forecasting model
	Slide 14: Forecasting with growth curves
	Slide 15
	Slide 16: Building a forecasting model
	Slide 17: Fitting time-series models fpp3
	Slide 18
	Slide 19: Key Assumptions
	Slide 20: Key Assumptions
	Slide 21: Key Assumptions
	Slide 22: Regression Discontinuity (RDD)
	Slide 23: Regression Discontinuity in Practice
	Slide 24
	Slide 25: Regression Discontinuity
	Slide 26: Practical
	Slide 27: Lunch

