Interrupted Time Series & Regression Discontinuity

Control Units

		0	1	Many
# Time-Points	2	Post - Pre (inference only with multiple treated units)	Diff-in-Diff (inference only with multiple treated units)	Synthetic Diff-in-Diff, Matching DID
	Few (>2)Regression Discontinuity Design, Post - Pre		Diff-in-Diff (inference based on time-averages)	Synthetic Control
	Many	Interrupted Time Series (ITS)	Controlled Interrupted Time Series (CITS)	Synthetic CITS Synthetic Control

Control Units

		0	1	Many
# Time-Points	2	Post - Pre (inference only with multiple treated units)	Diff-in-Diff (inference only with multiple treated units)	Synthetic Diff-in-Diff, Matching DID
	Few (>2)Regression Discontinuity Design, Post - PreManyInterrupted Time Series (ITS)		Diff-in-Diff (inference based on time-averages)	Synthetic Control
			Controlled Interrupted Time Series (CITS)	Synthetic CITS Synthetic Control

Control Units

		0	1	Many
# Time-Points	2	Post - Pre (inference only with multiple treated units)	Diff-in-Diff (inference only with multiple treated units)	Synthetic Diff-in-Diff, Matching DID
	FewRegression(>2)DiscontinuityPost - Pre		Diff-in-Diff (inference based on time-averages)	Synthetic Control
	Many	Interrupted Time Series (ITS)	Controlled Interrupted Time Series (CITS)	Synthetic CITS Synthetic Control

The story so far

The **proposition 99** data has a number of pre- and postintervention observations (i.e. time points)

So far we computed averages and estimated

$$\overline{CE}_{post} = \overline{Y}_{post}^1 - \overline{Y}_{post}^0$$

Interrupted Time Series:

- Instead of taking averages, use pre-intervention data Y_{pre}^{0} to **forecast/predict** Y_{post}^{0}
- Once we have predictions \hat{Y}^0_{post} , we compare those to the observed Y^1_{post}
- I.e. we use pre-intervention data to **impute** the missing counterfactual

This means we can in principle estimate

$$\widehat{CE}_t = Y_t^1 - \widehat{Y_t^0}$$

Time	Y_t	A_t	Y_t^0	Y_t^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
T	2	1	NA	2

Point forecasts allow us to compute point estimates of our causal effect

$$\widehat{CE}_t = Y_t^1 - \widehat{Y_t^0}$$

We can quantify our **uncertainty** about the causal effect based on our **uncertainty** around our (model-based) forecasts

Building a forecasting model

Much of the challenge of this approach is in choosing an appropriate **forecasting** model

These can be very simple or very complex, e.g.:

• If we forecast with the **mean** we are very close to the post – pre analysis

$$Y_t = \mu_{pre} + e_t$$

Building a forecasting model

Much of the challenge of this approach is in choosing an appropriate **forecasting** model

These can be very simple or very complex, e.g.:

• If we forecast with the **mean** we are very close to the post – pre analysis

 $Y_t = \mu_{pre} + e_t$

• We can forecast by fitting a **growth curve** which would model the overall time trend

 $Y_t = \beta_0 + \beta_1 Time + e_t$

Forecasting with growth curves

Building a forecasting model

Much of the challenge of this approach is in choosing an appropriate **forecasting** model

These can be very simple or very complex, e.g.:

• If we forecast with the **mean** we are very close to the post – pre analysis

 $Y_t = \mu_{pre} + e_t$

• We can forecast by fitting a **growth curve** which would model the overall time trend

 $Y_t = \beta_0 + \beta_1 Time + e_t$

• We can forecast by using **time-series models** that model **autocorrelation**

$$Y_t = \phi_1 Y_{t-1} + e_t$$
 $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$ $Y_t - Y_{t-1} = \gamma e_{t-1} + e_t$

e.g. ARIMA models can account for autocorrelation and time trends

Fitting time-series models fpp3

```
library(fpp3)
library(tidyverse)
# Create a time-series tibble for fpp3
prop99_ts <-
    prop99 |>
    filter(state == "California") |>
    select(year, cigsale) |>
    mutate(prepost = factor(year > 1988, labels = c("Pre", "Post"))) |>
    as_tsibble(index = year) |>
    mutate(year0 = year - min(year))
```

```
fit_arima <-
   prop99_ts |>
   filter(prepost == "Pre") |>
   model(timeseries = ARIMA(cigsale, ic = "aicc"))
```

fcasts <- fit_arima |> forecast(new_data = prop99_ts |> filter(prepost == "Post"))

Key Assumptions

Our inferences about the causal effect are entirely dependent on being able to fit **an appropriate forecasting model**

- i.e. one that correctly captures the trend and autocorrelation structures in the data

In practice, this may be **very difficult**

Key Assumptions

Data driven approaches can be applied, but may only be feasible with **a** large amount of pre-intervention training data

- We use information criteria for model selection
- See also: cross-validation

In addition, different forecasting models come with their own assumptions,

- E.g. constant trend or time-invariant relationships

Poor forecasts = Poor estimates (and uncertainty) of causal effects

Key Assumptions

When comparing to the **pre-post design**;

- We relax the no-trend assumption: we model any trend / serial dependence

No-confounding assumption:

- We still assume that any changes can be attributed to the intervention
- And not, e.g., something else that happened around the same time
- To tackle that we need control units + other assumptions

Regression Discontinuity (RDD)

Closely related technique, but used in many other contexts

E.g., instead of "Time" we may have "Income"; if above X, eligible for social welfare.

In a RDD analysis you fit *piecewise* growth-curve type model such as

$$Y_t = \beta_0 + \beta_1 A_t + \beta_2 Time + \beta_3 * Time * A_t + e_t$$

In this model the effect of the intervention is parameterized by the change in **level** β_1 and the change in **trend** β_3 after the intervention

Hypothesis tests on these parameters are used as hypothesis tests about the presence / absence of a causal effect

Regression Discontinuity in Practice

fit_rdd <- lm(cigsale ~ year0 + prepost + year0:prepost, prop99_ts)</pre> summary(fit_rdd)

Coefficients:					
	Estimate Std.	Error 1	t value	Pr(> t)	
(Intercept)	98.4158	2.4746	39.770	< 2e-16	***
year0	-1.7795	0.2170	-8.199	8.36e-09	***
prepostPost	-20.0581	3.7471	-5.353	1.18e-05	***
year0:prepostPost	-1.4947	0.4846	-3.084	0.00467	**
Signif. codes: 0	'***' 0.001 '	'**' 0.01	L'*'O.	05 '.' 0.	1''1
Residual standard error: 5.182 on 27 degrees of freedom					
Multiple R-squared: 0.9732, Adjusted R-squared: 0.9702					
F-statistic: 326.4	4 on 3 and 27	DF. D-\	value: <	2.2e-16	

ori 5 ariu

-statist

p-valu

Regression Discontinuity

Basic Idea:

You directly **model** whatever changes you think happen to the target process

- Instead of making forecasts/predictions of the counterfactual directly

Advantages

- More direct. Inference about CE based on significance tests on "change" parameters
- Many extensions and theory to deal with, e.g., "sharp" vs "fuzzy" designs

Disadvantages

• Strongly rely on correct model specification and model interpretability; specify "where" or "how" the intervention has an effect

Practical

Work in your groups!

