Estimating the causal effect Synthetic control method

"arguably the most important innovation in the policy evaluation literature in the last 15 years"

Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. Journal of Economic perspectives, 31(2), 3-32.

In this part

- Introducing the synthetic control method
- How to quantify uncertainty
- What choices do we need to make and how do these impact our causal effect estimates?
- Performing the synthetic control method with *tidysynth* package

Control Units

		0	1	Many	
ints	2	Post - Pre (inference only with multiple treated units)	Diff-in-Diff (inference only with multiple treated units)	Synthetic Diff-in-Diff, Matching DID	
# Time-Points	Few (>2)	Regression Discontinuity Design, Post - Pre	Diff-in-Diff (inference based on time-averages)	Synthetic Control	
	Many Interrupted Time Series (ITS)		Controlled Interrupted Time Series (CITS)	Synthetic CITS Synthetic Control	

Control Units

		0	1	Many	
ints	2	Post - Pre (inference only with multiple treated units)	Diff-in-Diff (inference only with multiple treated units)	Synthetic Diff-in-Diff, Matching DID	
# Time-Points	Few (>2)	Regression Discontinuity Design, Post - Pre	Diff-in-Diff (inference based on time-averages)	Synthetic Control	
	Many Interrupted Time Series (ITS)		Controlled Interrupted Time Series (CITS)	Synthetic CITS Synthetic Control	

Basic idea

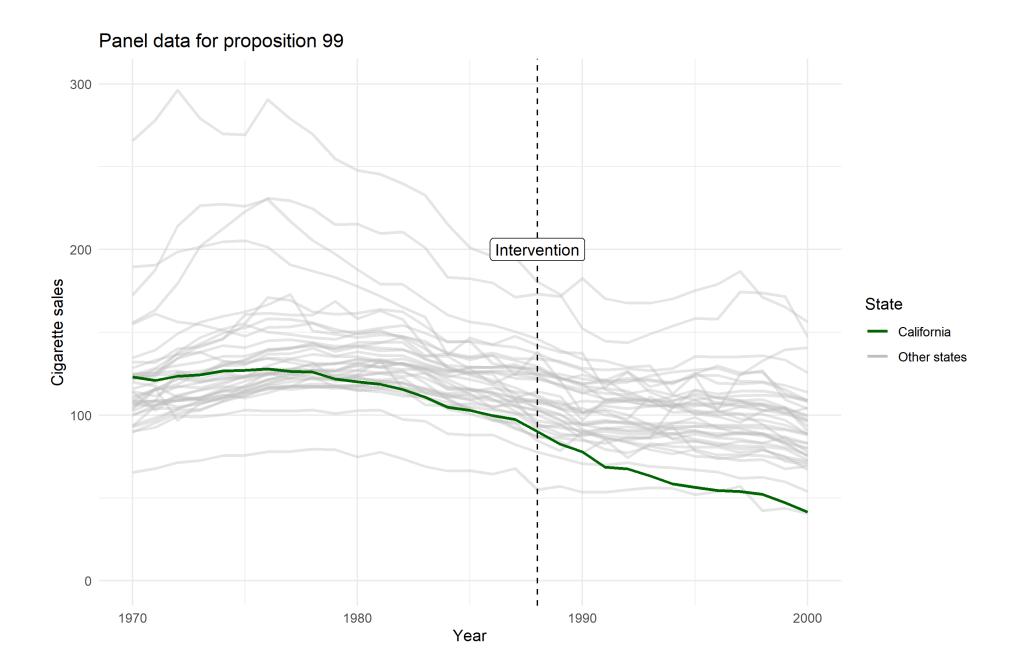
With diff-in-diff we used a control unit to attempt a correction for unmeasured time-varying confounders (e.g., macroeconomic situation in U.S.A.)

- You need a good control unit!
- How much is Utah like California?

We can instead use a weighted average of a **donor pool** of control units to create a **synthetic control** unit

• Choose the weights such that control is like California

Time	Y_t	A_t	Y_t^0	Y_t^1	C_{1t}	C_{2t}	•••	C _{jt}
1	7	0	7	NA	2	9	•••	6
2	9	0	9	NA	6	9	•••	8
3	6	0	6	NA	4	3	•••	5
4	5	0	5	NA	2	1	•••	4
5	6	0	6	NA	1	2	•••	7
6	2	1	NA	2	3	6	•••	7
7	3	1	NA	3	2	5	•••	6
8	1	1	NA	1	4	6	•••	5
					•••	•••	•••	4
Т	2	1	NA	2	3	4		6



Introduced in 2000s

- Abadie, A., & Gardeazabal, J. (2003). The economic costs of conflict: A case study of the Basque Country. American Economic Review, 93(1), 113-132.
- Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.

An R package with JSS paper in 2011

• Abadie, A., Diamond, A., & Hainmueller, J. (2011). Synth: An R package for synthetic control methods in comparative case studies. Journal of Statistical Software, 42(13).

A great overview paper with recent learnings in 2021

• Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature, 59(2), 391-425.

Causal **estimand** is the effect of the intervention at time *t*:

$$CE_t = Y_t^1 - Y_t^0$$

where $t > T_0$ (i.e., the post-intervention time period)

$$CE_t = Y_t^1 - Y_t^0$$

- Again, Y_t^1 is observed the post-intervention time series for the treated unit
- But Y_t^0 is an unobserved counterfactual what would have happened had the treated unit been untreated?

$$CE_t = Y_t^1 - Y_t^0$$

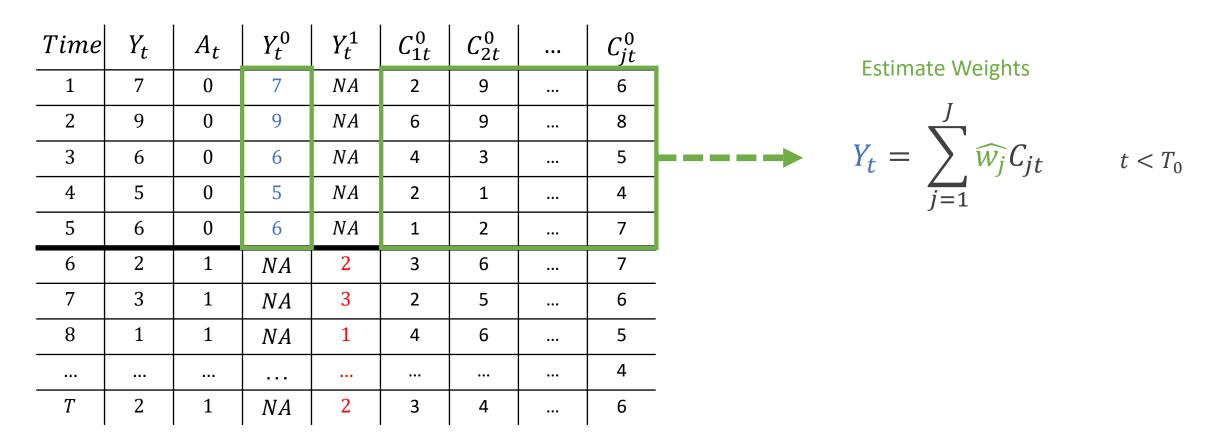
The problem of estimating the effect of a policy intervention is equivalent to the problem of estimating Y_t^0

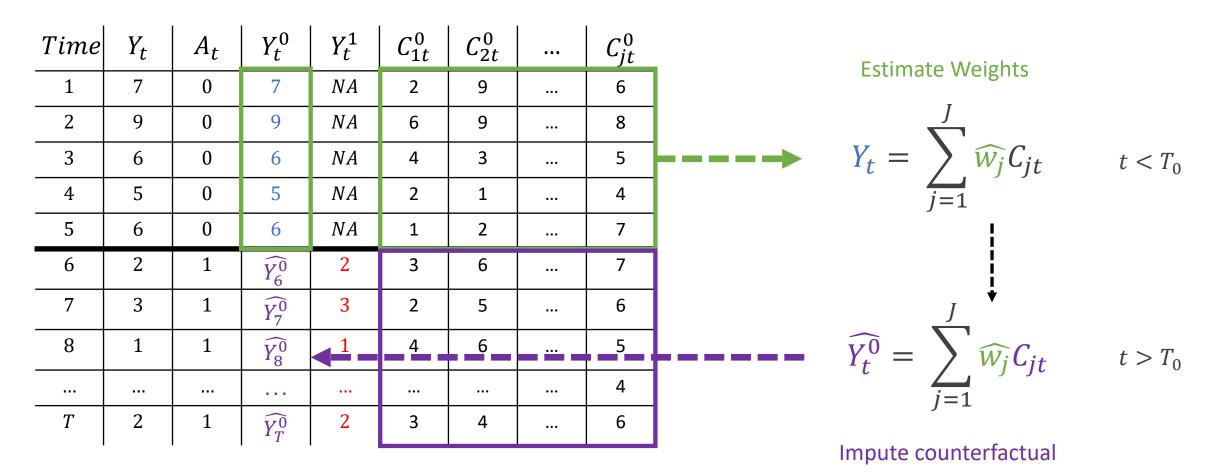
Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature, 59(2), 391-425.

We can estimate the counterfactual as follows:

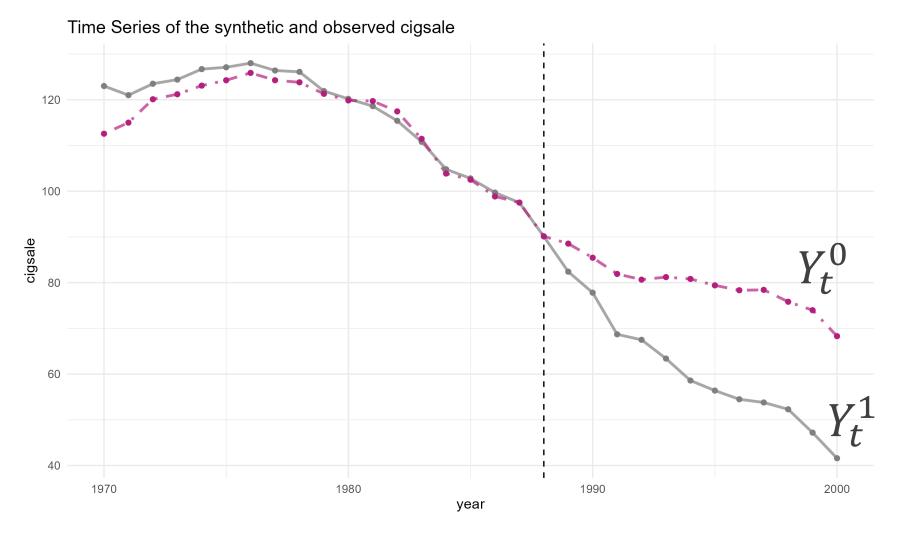
$$Y_t^0 = \sum_{j=1}^J w_j C_{jt}$$

- C_{jt} is the time-series for donor pool unit j at time t e.g., cigarette sales in Utah in 1989-2000
- w_j is a weight for this state e.g., a single value like 0.334





 $\widehat{CE}_t = Y_t^1 - \widehat{Y_t^0}$



- Observed - Synthetic

Dashed line denotes the time of the intervention.

Three questions

- How to choose the weights?
- Which units can go in the donor pool?
- How to make sure that the synthetic control is interpretable?

- Choose weights such that the synthetic control **looks like** the treated unit
- Use only pre-intervention data for this
- Weights should be positive and sum to one Interpolation constraint / convex hull

What does it mean to looks like California? This is a choice by the researcher!

- Pre-intervention target variables
 - Cigarette sales
- Pre-intervention covariates
 - Population composition
 - Average income of population
 - Price of cigarettes
 - Beer consumption

- Simultaneous estimation of two weights
 - Unit weights w_j
 How important is each donor pool unit j?
 - Variable weights v_h How important is each variable p?
- Choose *w* to minimize *v*-weighed multivariate Euclidean distance between treated and synthetic control pre-intervention

$$\widehat{w}_j = \min_{w_j} \| v \cdot (X_T - w^T X_D) \|$$

• Like nearest neighbours matching!

How to choose v_h ?

Simple

Use inverse of variance of each variable h

Like scaling the variables and then using unweighted Euclidean distance matching

Complex

Choose *v* such that root mean squared prediction error (RMSPE) on pre-intervention target variable is minimized Increased importance of good pre-intervention prediction. We will get back to this later

Choosing donor pool

No interference / spillover

The donor pool unit does not receive any intervention effect

Example spillover effects

- Californians living near the border may buy their cigarettes in states across the border
- Other states may pass laws similar to on California

Measurement

Measure control variables and target variable in the donor pool unit **before and after** the intervention

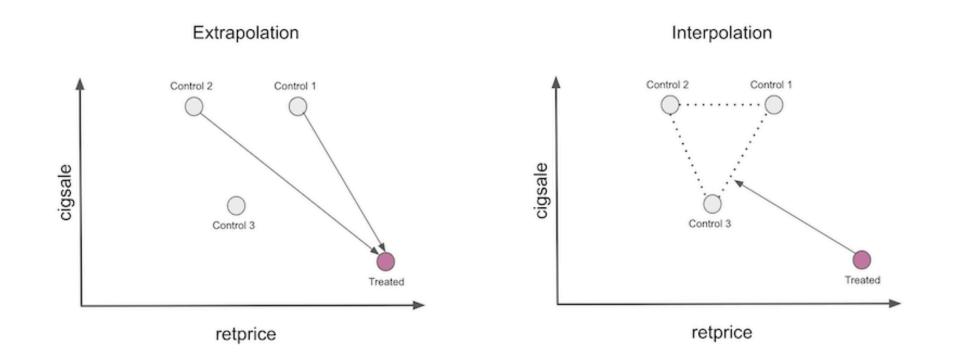
- Ideally, large pre-intervention time window Otherwise, risk overfitting pre-intervention; bad prediction for counterfactual
- Be able to measure target variable after intervention counterfactual is weighted average of this

Convex hull condition

Distribution of control and target variables in donor pool should cover treated unit

- It should be possible to interpolate the target unit values pre-intervention using the donor pool units
- If donor pool units all have much higher cigarette sales, it is impossible to represent cigarette sales in California using positive weights which sum to 1

Interpolation



Alves, M. F. (2022). Causal inference for the brave and true.

Interpretability

Interpretability

- If donor pool is large, synthetic control can be combination of many units
- Hard to interpret what the synthetic control unit is!
- Therefore: sparse estimation of weights
- Additional penalty such that most weights are 0
- The units belonging to nonzero weights can be manually inspected

Synthetic control using tidysynth

Synthetic control in practice

```
library(tidyverse)
library(tidysynth)
```

2

3

6

16

```
4 # Read the <u>dataset</u>
5 prop99 ← read_rds("data/proposition99.rds")
```

```
# Create synthetic control object
 8
    prop99_syn ←
      prop99 ▷
 9
      synthetic_control(
10
        outcome = cigsale,
11
        unit = state,
12
        time = year,
13
        i unit = "California",
14
        i time = 1988
15
```

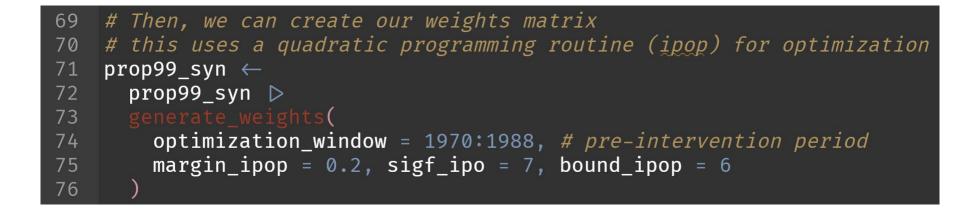
```
# Now, generate the aggregate predictors used to estimate
37
38 # the weights
39
    prop99_syn ←
40
      prop99_syn >
     generate predictor(
41
        time_window = 1980:1988,
42
       lnincome = mean(lnincome, na.rm = TRUE),
43
        retprice = mean(retprice, na.rm = TRUE),
44
        age15to24 = mean(age15to24, na.rm = TRUE)
45
46
      ) 🗅
47
48
       time window = 1984:1988,
49
        beer = mean(beer, na.rm = TRUE)
50
      ) 🗅
51
     generate predictor(
52
     time window = 1975,
53
        cigsale 1975 = cigsale
54
      ) >
55
56
        time window = 1980,
        cigsale 1980 = cigsale
57
58
      ) 🗅
59
60
        time window = 1988,
        cigsale 1988 = cigsale
61
62
```

Inspecting predictors

>	grab_predict	ors(prop99_syn)
#	A tibble: 7	× 2
	variable	California
	<chr></chr>	<dbl></dbl>
1	age15to24	0.174
2	lnincome	10.1
3	retprice	89.4
4	beer	24.3
5	cigsale_1975	127.
	cigsale_1980	120.
7	cigsale_1988	90.1

	grab_predict		99_syn, t	type = "o	controls'		
Ħ	A tibble: 7			_		_	
	variable	Alabama	Arkan…¹	Color… ²	Conne ³	Delaw…4	Georgia
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	age15to24	0.175	0.165	0.174	0.164	0.178	0.177
2	lnincome	9.68	9.64	9.98	10.2	9.97	9.82
3	retprice	89.3	89.9	82.6	103.	90.1	84.4
4	beer	19.0	18.5	25.1	20.7	26.1	21.8
5	cigsale_1975	112.	115.	131	110.	148.	123.
6	cigsale_1980	123.	132.	131	118	150.	134
	cigsale_1988						
#	with 32 mo	re varial	oles: Ida	aho <dbl></dbl>	>, Illind	ois <dbl></dbl>	
#	Indiana <dl< td=""><td>bl>, Iowa</td><td>a <dbl>,</dbl></td><td>Kansas <</td><td><dbl>, Ke</dbl></td><td>entucky <</td><td><dbl>,</dbl></td></dl<>	bl>, Iowa	a <dbl>,</dbl>	Kansas <	<dbl>, Ke</dbl>	entucky <	<dbl>,</dbl>
#	Louisiana	<dbl>, Ma</dbl>	aine <dbl< td=""><td>l>, Minne</td><td>esota <db< td=""><td>ol>,</td><td></td></db<></td></dbl<>	l>, Minne	esota <db< td=""><td>ol>,</td><td></td></db<>	ol>,	
#	Mississipp						
#	Nebraska <						>,
#	New Mexico						
	North Dak						
	i Use `colnam						

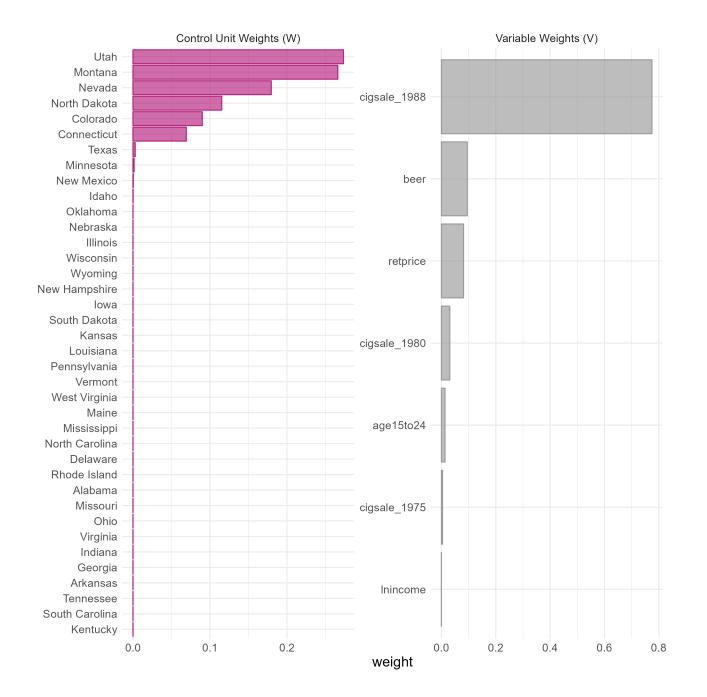
Estimating weights (magic!)



Inspecting weights

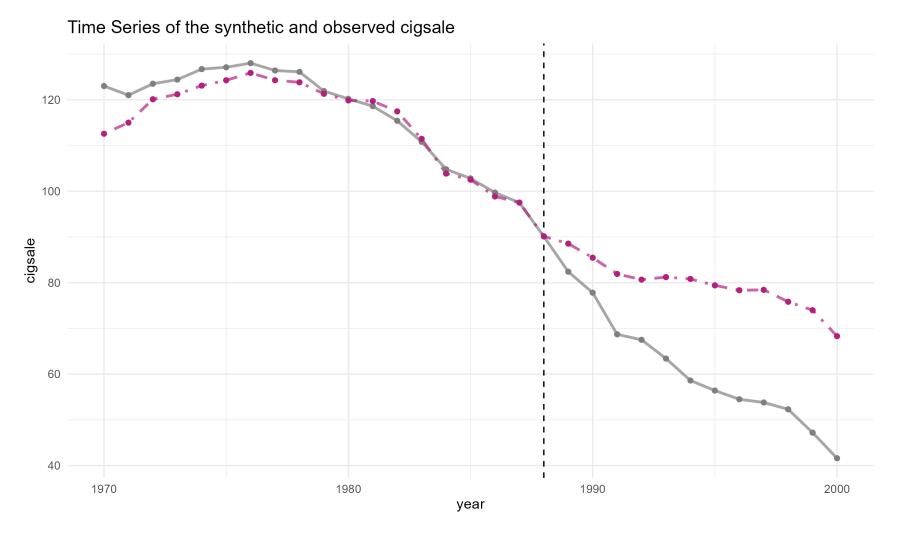
<pre>> grab_unit_weig</pre>		\triangleright	
+ arrange(-v	veight)		
# A tibble: 38 >	< 2		
unit	weight		
<chr></chr>	<dbl></dbl>		
1 Utah	0.273		
2 Montana	0.266		
3 Nevada	0.180		
4 North Dakota	0.115		
5 Colorado	0.090 <u>0</u>		
6 Connecticut	0.069 <u>3</u>		
7 Texas	0.002 <u>97</u>		
8 Minnesota	0.001 <u>51</u>		
9 New Mexico	0.000 <u>513</u>		
10 Idaho	0.000 <u>277</u>		
# with 28 more	e rows		
<pre># i Use `print(n</pre>	=)` to see	more	rows

	<u> </u>	or_weights(prop99_syn)
#	A tibble: 7 >	< 2
	variable	weight
	<chr></chr>	<dbl></dbl>
1	age15to24	0.013 <u>3</u>
2	lnincome	0.000 <u>065</u> 8
3	retprice	0.081 <u>4</u>
4	beer	0.095 <u>3</u>
5	cigsale_1975	0.004 <u>14</u>
6	cigsale_1980	0.031 <u>0</u>
7	cigsale_1988	0.775



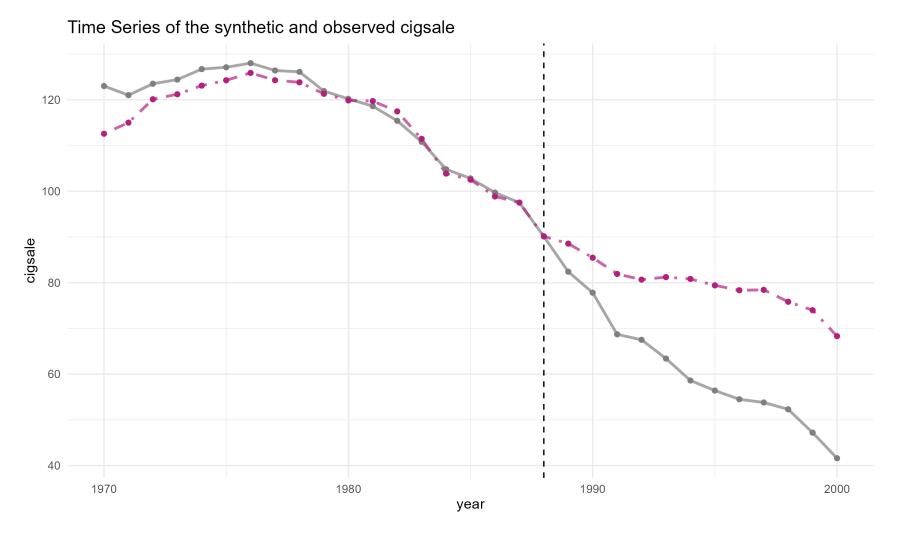
Creating synthetic control

> # Generate the synthetic control					
<pre>> prop99_syn_control</pre>					
<pre>> grab_synthetic_control(prop99_syn_control)</pre>					
# A tibble: 31 × 3					
time_unit real_y synth_y					
		<dbl></dbl>			
1	1970	123	113.		
2		121			
		124.			
4	<u> </u>	124.	121.		
5	<u>1</u> 974	127.	123.		
6	<u>1</u> 975	127.	124.		
7	<u>1</u> 976	128	126.		
8	<u>1</u> 977	126.	124.		
9	<u>1</u> 978	126.	124.		
10	<u>1</u> 979	122.	121.		
# with 21 more rows					
# i Use	`print((n =)` to s	ee more	rows



- Observed - Synthetic

Dashed line denotes the time of the intervention.

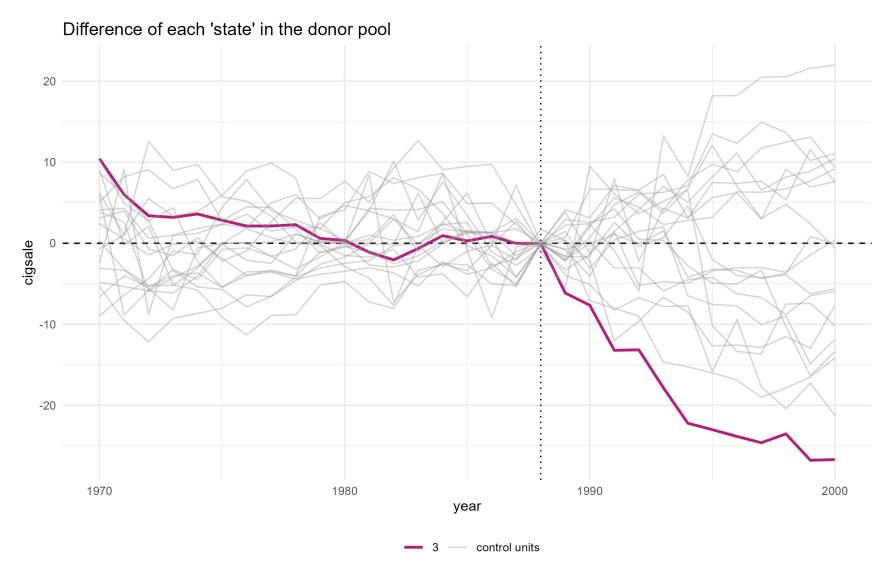


- Observed - Synthetic

Dashed line denotes the time of the intervention.

How to quantify uncertainty?

- Most common method: permutation test
- Apply synthetic control method many times, once for each unit in the donor pool
- These units have no intervention effect
- Create reference/null distribution of Y_t^0
- Compare target unit's counterfactual to reference distribution
- Obtain a permutation p-value



Pruned all placebo cases with a pre-period RMSPE exceeding two times the treated unit's pre-period RMSPE.

Choices, choices ...

There are many choices

- Which units in the donor pool?
- Which control variables?
- What should my weights optimize?
- How many nonzero unit weights should I get?
- What settings do I give to the nonlinear optimizer?

"researcher degrees of freedom"

There are many choices

- These choices influence your causal estimate \widehat{CE}_t
- Make good choices 🙄
- Think of your causal estimate as "conditional" on the "model" (choices)
- Investigate the impact of different choices through robustness checks / sensitivity analysis

Leave-one-unit-out validation

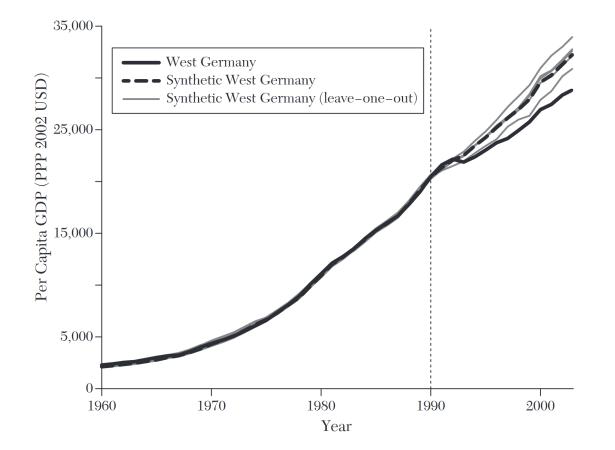


Figure 4. Leave-one-out Estimates of the Effect of the 1990 German Reunification

More of this in the practical

